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EXECUTIVE SUMMARIES

Executive summaries of the technical accomplishments during the grant period are presented in the
following pages according to the schedule below:
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PROCESSING AND PROPERTIES OF A-PA HYBRID FIBERS

Paul E. Cantonwine and Haydn N.G. Wadley

Executive Summary

After the decision was made to focus this URI on extending the use temperatures of metal matrix
composites via the hybrid fiber processing approach, it was our responsibility to provide enough
alumina-porous alumina (A-PA) hybrid fiber to support the groups efforts. A schematic of the
hybrid fiber approach is shown in figure 1. Within six months a lab scale fiber line (see figure 1a)
was developed which enabled us to manufacture over 5000 feet of fiber in one week.

a) A-PA hybrid fiber

>

(green)

Nexte! 610
(420 filament tow)

19

A-PA hybrid fiber
{(green)

" Flat fiber array

1000 - 1100°C box furnace

b)

Al203
powder

N s
N Bg,

d)
Slurry Casting

Powder
slurry

Wy S Reservoir
Fiber substrate, l‘/
moving at
speed v

Figure 1 A schematic of the hybrid fiber processing approach: a) A-PA hybrid fiber line b) com-
position of slurry poured into dip pan c) fiber winding and sintering d) slurry casting of metal

matrix
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The desired operating temperatures of these materials are between 800 and 1000 °C. Therefor,
understanding the effects of high temperature aging on the mechanical properties is essential. Fig-
ure 2 shows the important microstructural features of the A-PA hybrid fiber. When heat is applied,
three different sintering phenomena will occur simultaneously. First the powder/powder contacts
will grow; second, the powder/filament contacts will grow and third, the filament/filament con-
tacts will grow. Our approach was to isolate the effect of each sintering phenomena in order to
understand how they related to mechanical properties. Currently, we will concentrate on describ-
ing the effect of the filament/filament contacts on the room temperature tensile properties of the
alumina bundles and A-PA hybrid fiber. We will also briefly discuss the effects of the powder/
powder and powder/filament contacts.

Porous matrix

...\\ ¢ [,
Alumina

Powder

Figure 2 A porous alumina matrix reinforced with alumina filaments

Uninfiltrated bundles were heat treated to investigate the effect of filament/filament sintering on
the mechanical response of alumina bundles. Both the single filament and bundle strengths
decreased with sintering temperature. Fractography of the single filament fractures indicated a
dramatic change in the defect population; at the higher temperatures more filaments failed from
weld-line defects caused by filament/filament sintering.

Using the single filament strengths from the heat treated bundles, ideal bundle predictions were
compared to the measured bundle response. At the lower temperatures, the ideal bundle model
predicted the bundle response, but dramatically overpredicted the failure stress and strain after
high temperature aging. Two reasons for the overprediction are proposed. First, the ideal bundle
model assumes each filament is independent from its neighbor, however when filaments are
bonded together this assumption is no longer valid. Second, differences in the fracture surfaces
indicated the stress distribution around the weld-line at failure was different in the single filament
tests (filaments pulled apart) compared to the bundle tests (filaments in contact). This is an indica-
tion that the filaments may be weaker when they are in contact compared to when they have been
pulled apart.

In addition, it is believed that in this oxide/oxide system, the interfacial shear strength is con-
trolled by the shear strength of the powder/filament contacts. The interfacial shear strength is a
function of the size and number of the powder/filament contacts, and was varied by varying the
density of the matrix and the aging temperature. The results indicated that with a low interfacial
shear strength the filament/filament bonding defects dominated but as the shear strength
increased, local load sharing effects began to emerge.
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THE CREEP BEHAVIOR OF AL,0;-BASED TOW AND HYBRID FIBERS

Vincent H. Hammond, Frank E. Wawner, and Dana M. Elzey

Background

The design of continuous fiber-reinforced composite systems for high temperature structural
applications requires a complete understanding of the thermal and mechanical behavior of the
constituents - i.e., the matrix and fiber. For many applications, such as power generation and
aerospace systems, the most critical property is the ability of a material to resist time-dependent
(creep) deformation at elevated temperatures.

The creep resistance and behavior of many candidate metal matrices currently under
consideration for elevated temperature applications are well characterized. While some research
has studied the creep of monolithic fibers and fiber bundles (1-4), the creep response of bundles
is not well understood. In addition, although theoretical models have been proposed (5-8), no
careful experimental studies have been used to verify or improve these models.

In this summary, the experimental results of creep tests performed on both alumina (Nextel 610)
tows and alumina-porous alumina (A-PA) fibers will be presented and discussed. Also, the
framework of a theoretical model currently being developed for predicting the fiber bundle creep
response will be outlined.

Experimental

The A-PA fiber is prepared by pulling a Nextel 610 tow through an alumina slurry. The fiber is
shaped and the organic binder is burned off, resulting in a “green” fiber. The A-PA is then
sintered at elevated temperature to achieve the desired properties. More detail concerning the
processing of the A-PA fiber can be found in an earlier section of this report (9). The final
diameter of the A-PA fiber is approximately 300 pm.

Prior to testing, the sizing on the as-received Nextel 610 tows is burned off and replaced with a
polymer coating to prevent damage during handling. The A-PA hybrid fiber is coated with a
similar polymer coating. This coating is burned off the gage section during heat-up to the test
temperature.

Creep tests were conducted using the apparatus shown in Figure 1. The system consists of an
induction heater surrounding a nickel susceptor, a strain transducer (LVDT), load train, and
sample grips. After the fiber is heated to the desired test temperature, a constant known load is
applied. The LVDT outputs a voltage proportional to the elongation as a function of time, which
is then recorded for analysis after the test is complete. All tests were conducted in air.

The fiber is removed from the heater after failure and saved for later study. In the case of the
plain bundle tests, individual filaments are removed from the bundle, cleaned in acetone, and
mounted on a sample holder for examination in a scanning electron microscope (SEM).
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Similarly, the failure ends of the hybrid fibers are carefully removed and mounted for
examination in the SEM.

It must be pointed out that the strains presented in this summary are based on a gage length of
2.375 inches, which is the physical height of the nickel susceptor. This is not an accurate
indication of the gage length due to the presence of a temperature gradient within the susceptor

(Figure 2).

Presently, there are two alternatives being considered. The first is known as the "effective gage
length" proposed by Pysher (11). In this method, the temperature is measured as a function of
position. The filament creep rate is determined using the equation generated by Wilson (10). The
area of the creep rate / position curve is calculated. The temperature corresponding to the
maximum creep rate is determined. This represents the height of a rectangle whose area is equal
to the area under the creep rate / position curve. The gage length is then determined by
calculating the length necessary to achieve this area. Using this new gage length, a new set of
strain data is generated, which results in a new creep rate / position curve. This process is
repeated until good agreement is reached (usually 3 iterations). This method results in a gage

length of 1.73 inches.

The second method involves setting a minimum creep rate (temperature) below which elongation
is negligible compared to that occurring in the hot zone of the furnace. A curve is then fit to the
temperature profile, so that the temperature gradient may be modeled directly. A minimum
temperature of 800 °C was selected as the lowest temperature of interest. Using this approach, a
gage length of 3.25 inches was determined. A plot showing the influence of gage length on the
strain is shown in Figure 3.

Results and Discussion

Alumina (Nextel 610) Tows

The creep response of single Nextel 610 (alumina) filaments has been well-characterized (10).
The tests reported here have been performed primarily at 1000 and 1100 °C; but two tests were

performed at 1200 °C.

Creep strain vs. time curves for three tests at 1100 °C are shown in Figure 4. From this figure, it
can be seen that the creep response is predominantly steady state with little primary creep. A
sharp increase of strain with time near the end of the tests (tertiary creep) signals imminent
failure. Tertiary creep is not observed in tests on single Nextel 610 filaments (10), but has been
found in tests of other tow fibers, including FP and PRD-166 bundles (3). The presence of
tertiary creep in bundles is attributed to an increase in the effective applied stress due to
progressive failure of individual filaments within the tow.

A comparison of creep rates for single Nextel 610 filaments and bundles is shown in Figure 5.
Single filament data supplied by Dave Wilson of 3M (12) are shown using filled symbols, while
the strain rates calculated from bundle tests are shown using open symbols. The stress exponents
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(slope of the stress-strain curve) measured for single filaments and tow fibers are similar
(Tablel).

Fiber 1000 °C 1100 °C 1200 °C
Single filament 2.76 3.09 2.98
Tow fiber 4.11 2.94 2.38

Table 1: Stress exponents for Nextel 610 single filament and tow fibers.

By writing the steady state creep rate equation in the form

Es = Aexp(%)

The creep activation energy (Q) can be determined by plotting the natural log of the creep rate as
a function of inverse temperature (T). Performing a series of tests using the same applied stress at
different temperatures generates data for this analysis. Results of these tests are shown in Figure
6. By taking the slope of the linear regression fit to the data, the creep activation energy of the
tow fiber was calculated as 630 kJoules/mole. This value is in good agreement with the
activation energy of 660 kJoules/mole reported for the Nextel 610 single filaments (10). The
good agreement in these creep parameters suggests that the bundle behaves primarily as a
collection of filaments, with little interaction between individual filaments during creep.

Alumina — Porous Alumina (A-PA) Hybrid Fiber

Two sets of hybrid fibers were prepared for creep testing, one subjected to in-line sintering (ILS)
at 1100 °C, the other sintered at 1400 °C. This was done to determine the influence of the
sintering temperature on the creep response of the hybrid fiber. The normal sintering temperature
of the hybrid fiber is 1100 °C. The second temperature was chosen because earlier tensile testing
had shown that the strength of the hybrid fiber begins to decline when sintered at 1400 °C or
higher. To date, all creep tests have been performed at 1100 °C.

Figure 7 compares the creep response of the Nextel 610 bundle and A-PA fiber (sintered at 1100
°C) at 1100 °C with an applied load of 3.5 pounds. It can be seen that the initial strain rates for
the bundle and hybrid fiber are approximately the same. However, the failure strain and the time
to failure of the hybrid fiber are roughly twice that of the bundle.

In Figure 8 is a similar plot for the A-PA fiber sintered at 1400 °C in which a dramatic reduction
in creep rate is observed for the A-PA fiber. The differences in the creep response of these
materials are detailed in the following table.
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Fiber £ T¢ (seconds) | & x 10°s™

Plain Tow 0.0595 1022 39.38
A-PA 1100°CILS | 0.1168 2435 39.84
A-PA 1400 °CILS | 0.0789 26613 1.867

Table 2: Comparison of creep response of Nextel 610 bundles and A-PA fibers (T= 1100 °C, P=3.5 lbs).

A plot of creep rate versus stress for each of the three sample types tested at 1100 °C is shown in
Figure 9. The dramatic reduction in creep rate (greater than an order of magnitude) for the 1400
oC sintered A-PA fiber relative to the bundle and 1100 °C sintered A-PA fiber is clearly shown.
A comparison of the failure strains as a function of applied stress for all tests conducted at 1100
°C is shown in Figure 10. The failure strain of the A-PA fiber sintered at 1100 °C is the largest
followed by the 1400 °C sintered A-PA fiber, and then the Nextel 610 bundle with the lowest

strain to failure.

Figure 11 illustrates the time to failure as a function of stress for each of the three fibers. The low
creep rate of the 1400 °C hybrid fiber coupled with a high strain to failure results in the long
creep life. The low time to failure of the Nextel 610 bundle relative to the A-PA hybrid fibers is a
consequence of its relatively high creep rate and low failure strain.

The results presented above indicate clearly that the addition of a porous alumina binder strongly
alters the creep response of the conventional tow fibers. The reduction in creep rate and
simultaneous increase in failure strain of the hybrid fiber relative to the plain bundle might be the
result of load transfer between the filaments and the porous ceramic binder. This would explain
the observation that a higher sintering temperature results in enhanced creep resistance since this
would lead to a stronger bond between filaments and the binder, as well as between individual
filaments, thereby resulting in improved load transfer. A consequence of the binder’s ability to
transfer load is that failed filaments may be reloaded at some point away from the initial failure.

The doubling of the failure strain of the 1100 °C fiber relative to the untreated bundle must be
explained differently. The similar values of the creep rate for these two materials appear to rule
out any large degree of load transfer between the filaments and binder.

Future work will focus on characterizing the failure surfaces of failed A-PA fibers. Samples from
interrupted creep tests will be examined in an effort to determine the mechanisms responsible for
the observed behavior. In addition, creep tests will continue on the current set of hybrid fibers at
different temperatures to fully characterize their elevated temperature behavior. Hybrid fibers
with a greater amount of porous binder will be tested to further investigate the influence of
binder content on creep response. The understanding gained from these experiments will be used
to optimize the microstructure and processing of the hybrid fiber for use in high temperature
applications.
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Modeling the creep behavior of bundles

Concurrent with the above experimental work, a theoretical model designed to predict the creep
response of the Nextel 610 bundle is being developed. The model is micromechanics based in
that it will use single filament properties to predict the bundle creep response. Thus, the creep
response of the single Nextel 610 filaments (10) is used as input into the model. Therefore, it is
hoped that any type of fiber bundle may be modeled by simply inputting the individual filament
properties and bundle architecture.

The following assumptions are commonly made in the development of fiber bundle creep models
(5-8):

1) No interaction between individual filaments.

2) Each fiber is of equal diameter and is equally loaded at t=0.

3) All creep elongation occurs in a gage length of uniform temperature.
4) Bundle exhibits global load sharing.

5) Failure of filaments obeys the weakest link theory (W eibull theory).

The initial development of the creep model used the above assumptions as a guide. However,
there is a wide discrepancy between early model predictions and experimental results. Thus, it is
necessary to re-evaluate the above assumptions.

In this experimental study, the existence of a temperature gradient within the heated susceptor
precludes the assumption of a uniform temperature gage length. Additionally, the assumption of
elastic behavior until failure is not valid. Therefore, the use of Weibull parameters based on
elastic behavior at room temperature to model the elevated temperature creep response may not
be an appropriate choice. Also, a more realistic bundle failure criterion based on experimental
observations will be incorporated into the model. Once the model can successfully predict the
response of the Nextel 610 bundle, a load transfer routine will be added to model the creep
behavior of the A-PA hybrid fiber.

Conclusions:

The creep response of Nextel 610 bundles has been studied in the temperature range of 1000 -
1200 °C. Results indicate that bundles experience steady state creep until individual filaments
begin failing within the bundle. Once failure initiates, the bundle enters a tertiary creep regime
with failure imminent. Comparison of creep rate vs. stress plots for the bundie and single
filaments show nearly identical behavior for all temperatures.

The study revealed that infiltration of the fiber bundle with an alumina slurry followed by
sintering to produce a so-called “hybrid” fiber, results in a dramatically improved creep
resistance. In particular, hybrid fibers sintered at 1400 °C exhibited creep strain rates more than
one order of magnitude lower than for conventional (plain) bundles at the same applied load and
temperature. In addition, hybrid fibers sintered at lower temperatures (1100 °C) display creep
rates similar to plain bundles, but have approximately twice the strain to failure. Further
experimental and metallographic studies, as well as model development, are being pursued in
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order to understand the dependence of hybrid fiber creep behavior on processing and
microstructural parameters.
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Figure 2: Temperature gradient at 1100 °C for the nickel susceptor.
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PLASMA SPRAY PROCESSING OF
NICKEL ALUMINIDE

Vincent H. Hammond, Frank E. Wawner, and Dana M. Elzey

Background:

The purpose of this grant was to develop a cost-effective composite which could be used at
higher temperatures than currently possible with the silicon carbide/titanium matrix systems.
Two problems currently hinder widespread usage of this system at elevated temperatures: 1)
fiber/matrix reactivity, and 2) oxidation of both the matrix and fiber which results in a
degradation of composite performance. Both of these problems were addressed by looking at a
alumina fiber reinforced nickel aluminide. Nickel aluminides possess a higher oxidation
resistance than the titanium systems (1), while alumina is thermodynamically stable in the nickel
based matrix.

This phase of the project was centered on the use of plasma spray deposition to manufacture both
neat and A-PA fiber-reinforced tapes of IC-50. IC-50 has a nominal composition of Ni - 23% Al
- 0.5% Hf - 0.2% B (atomic %). The alloy was supplied by Praxair Specialty Powders with a size
distribution of 44 - 120 pm and a mean size of approximately 80 pm. Hafnium is added for solid
solution strengthening and to improve creep resistance. The addition of boron has been found to
dramatically improve room temperature ductility by suppressing intergranular fracture.

In the plasma spray process, matrix powder is injected into a plasma torch. The high temperature
of the plasma torch melts the particles, which are then directed onto a rotating substrate located
directly beneath the torch. The molten droplets solidify on the substrate, resulting in tapes which
can be stacked, oriented, and consolidated into the final neat matrix or composite part.

Deposition was conducted using a 100 kW RF induction coupled plasma spray system
manufactured by Tekna Plasma Systems, Inc. The plasma is created by passing the gas mixture
through a 5 turn induction coil centrally mounted above a vacuum chamber. Controls are used to
monitor chamber pressure, gas flow, mandrel motion, powder feed rate, and power settings. After
deposition, the foil was removed and inspected both visually and with the aid of a SEM. Phase
identification was performed via x-ray diffraction. Selected samples were analyzed to determine
the level of contaminants picked up during spraying.

Experimental Results:
Neat Foils

Initial deposition experiments used an argon/hydrogen (Ar/Hy) plasma. These foils were coated
with a black “soot” - like residue. SEM examination revealed the presence of fine micron-sized
particles on the surface of the foil (Figure 1a). It was thought that the particles were the result of
contamination from the carbon mandrel used as the deposition substrate. However, replacement
of the graphite mandrel with a 304 SS mandrel had no influence on the quality of the deposited
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material. Altering the amount of hydrogen used in the plasma gas also had little effect on the foil
quality.

One possible explanation for the presence of the residue is the high enthalpy of the Ar/H,
plasma, which may have resulted in the formation of a IC-50 vapor cloud inside the chamber.
Upon cooling, small particles may have condensed from the vapor and deposited on the foil
surface and chamber walls. Similar vapor phase condensation has been observed in the induction
plasma treatment of alumina powders (2).

A new set of experiments was conducted using an argon/helium (Ar/He) plasma. As the Ar/He
plasma has a lower enthalpy, or heat content, than the Ar/H, plasma, it was hoped that the
amount of the powder residue would be greatly reduced. Indeed, the deposited foils had a much
cleaner surface appearance, and SEM examination showed a significant reduction in the number
of micron-sized particles on the foil surface (Figure 1b).

Representative samples from both deposition experiments were analyzed using x-ray diffraction
to determine the phase of the deposited material. Scans from both sets of foils were identical. A
diffraction pattern for an Ar/He foil is shown in Figure 2, along with a reference pattern for
Ni;Al Although there is a slight shift to higher 26 values in the experimental pattern, the close
correlation clearly identifies the deposited material as Ni;Al. The slight shift has been attributed
to either the non-stoichiometric nature of the deposited IC-50 or the presence of residual stresses

in the foil (3).

An equally important criterion in determining foil quality is the amount of contaminants (i.e. -
oxygen and hydrogen) present in the deposited foils. Samples were sent to Leco Corporation
where the amount of oxygen and hydrogen present in each foil type were measured. The results
from these tests are given in the following table.

Table 1: Oxygen and hydrogen content in as-received IC-50 powder and plasma-sprayed foils.

Sample Type Oxygen, in wt. % | Hydrogen, in ppm
IC-50 powder 0.0133 3.1
Argon/Hydrogen foil 0.0631 52.1
Argon/Helium foil 0.0411 7.8

From this table, it is clear that the foils deposited with the Ar/H, plasma had a significantly
higher amount of both oxygen and hydrogen. The hydrogen is thought to occupy interstitial sites
in the lattice. An increase in the amount of interstitial hydrogen was observed in spray deposited
Ti-6-4 and Ti-6-2-4-2 monotapes (4)
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Fiber-Reinforced Tapes

Based on the above results, a standard procedure for spraying neat IC-50 was developed which
resulted in good quality, reproducible foils. This same procedure was used when work began on
spraying A-PA fiber reinforced tapes.

Prior to each run, the mandrel was cleaned to remove any residue from the previous run.
Approximately 8 - 10 rows of A-PA fiber was wound onto the mandrel using a low-speed lathe.
In this way, both fiber alignment and tension was constant for each experiment. A 17 steel plate
was laid across the fibers to hold them in place during the deposition.

After the fibers were secured, the mandrel was positioned in the chamber and pre-heated for 10
minutes using the plasma. The fibers survived this aspect of the deposition procedure very well.
However, once spraying began, some of the A-PA fibers developed hot spots, usually at kinks
which tended to lift off the mandrel. The fibers eventually failed at these spots and fell off the
mandrel. Approximately 50% of the fibers were lost in this manner, usually in a random manner.
Attempts at altering spraying height, plasma composition, or powder feed rate made little
difference in the failure of the fibers during spraying.

Despite the loss of several fibers, each spray run was completed. A visual inspection of the tape
was conducted after the run was completed. There was a tendency for the deposit on top of the
fibers to lift off, leaving the individual fibers exposed. In addition, there was only a small amount
of material deposited between the fibers. These problems were thought to be interrelated, in that
the deposit lift-off resulted from a lack of cohesion between the deposit on top of the fibers and
the material deposited between the fibers. The poor filling between the fibers was attributed to
the rough fiber surface, which prevented the molten droplets from flowing into the inter-fiber
gaps before they solidified. For comparison, both SCS-2 and SCS-6 fibers were wrapped onto
the mandrel and sprayed, using identical conditions as used during the A-PA spraying
experiments. None of the above difficulties were experienced when spraying these fibers.

Conclusions:

The feasibility of using plasma spray deposition for producing neat foils of a nickel aluminide,
namely IC-50, has been verified. Early attempts using an argon/hydrogen plasma torch resulted
in poor quality foils with a high level of oxygen and hydrogen. In addition, a large amount of
surface contamination in the form of micron-sized particles was noticed. The presence of the
particles was attributed to vapor phase condensation resulting from the high enthalpy of the
torch. When the plasma gas mixture was switched to argon/helium, the deposited foils had a
better appearance and a lower level of contaminants. X-ray diffraction showed that, in both cases,
the deposited material was NizAl

However, several problems were encountered when attempting to produce fiber reinforced tapes.
The primary difficulty was that the A-PA fiber tended to break when the spraying process was
started. Other problems included inadequate deposit between fibers and a tendency for the
deposited alloy to lift off the fibers upon cool-down. The inability to overcome these difficulties
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despite trying a number of approaches precludes the use of plasma spray deposition for
manufacturing A-PA fiber-reinforced 1C-50 tapes.
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